SVM-Maj: a majorization approach to linear support vector machines with different hinge errors
نویسندگان
چکیده
منابع مشابه
SVM-Maj: a majorization approach to linear support vector machines with different hinge errors
Support vector machines (SVM) are becoming increasingly popular for the prediction of a binary dependent variable. SVMs perform very well with respect to competing techniques. Often, the solution of an SVM is obtained by switching to the dual. In this paper, we stick to the primal support vector machine (SVM) problem, study its effective aspects, and propose varieties of convex loss functions s...
متن کاملRobust Truncated Hinge Loss Support Vector Machines
The support vector machine (SVM) has been widely applied for classification problems in both machine learning and statistics. Despite its popularity, however, SVM has some drawbacks in certain situations. In particular, the SVM classifier can be very sensitive to outliers in the training sample. Moreover, the number of support vectors (SVs) can be very large in many applications. To circumvent ...
متن کاملGeometric Approach to Statistical Learning Theory through Support Vector Machines (SVM) with Application to Medical Diagnosis
This dissertation deals with problems of Pattern Recognition in the framework of Machine Learning (ML) and, specifically, Statistical Learning Theory (SLT), using Support Vector Machines (SVMs). The focus of this work is on the geometric interpretation of SVMs, which is accomplished through the notion of Reduced Convex Hulls (RCHs), and its impact on the derivation of new, efficient algorithms ...
متن کاملParallel Support Vector Machines: The Cascade SVM
We describe an algorithm for support vector machines (SVM) that can be parallelized efficiently and scales to very large problems with hundreds of thousands of training vectors. Instead of analyzing the whole training set in one optimization step, the data are split into subsets and optimized separately with multiple SVMs. The partial results are combined and filtered again in a ‘Cascade’ of SV...
متن کاملIteratively-Reweighted Least-Squares Fitting of Support Vector Machines: A Majorization-Minimization Algorithm Approach
Support vector machines (SVMs) are an important tool in modern data analysis. Traditionally, support vector machines have been fitted via quadratic programming, either using purpose-built or off-the-shelf algorithms. We present an alternative approach to SVM fitting via the majorization–minimization (MM) paradigm. Algorithms that are derived via MM algorithm constructions can be shown to monoto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Data Analysis and Classification
سال: 2008
ISSN: 1862-5347,1862-5355
DOI: 10.1007/s11634-008-0020-9